SESTSUIPSE

A L3114

Topic

Reference

Recursion and
Backtracking

Ch.1 and Ch.2 JeffE

Dynamic Programming

Ch.3 JeffE and Ch.15 CLRS

Greedy Algorithms

Ch.4 JeffE and Ch.16 CLRS

Amortized Analysis

Ch.17 CLRS

Elementary Graph
algorithms

Ch.6 JeffE and Ch.22 CLRS

Minimum Spanning
Trees

Ch.7 JeffE and Ch.23 CLRS

Single-Source Shortest
Paths

Ch.8 JeffE and Ch.24 CLRS

All-Pairs Shortest Paths

Ch.9 JeffE and Ch.25 CLRS

Maximum Flow

Ch.10 JeffE and Ch.26 CLRS

String Matching

Ch.32 CLRS

NP-Completeness

Ch.34 CLRS

String matching — la ats, gl

* Finding all occurrences of a pattern in a text
* Application: text editing, DNA pattern

Formal definition of string marching

text T a | b | c [FalEElEalE=y D

pattern P

* Thetextisanarray T [1..n] of lengthn
* That the patternisanarray P|1..m| oflengthm < n

* Elements of P and T are characters drawn from a finite alphabet X

* ForexampleX = {0,1}orX = {a,b,...,z}.
e Character arrays P and T are often called strings of characters

Pattern P occurs with shift s in text T:(p occurs beginning at positions +1in T)

f0 <s<n-—-mandT|[s + 1..s + m|] = P[1..m]
(thatis,if T [s + j] = P[j],forl < j < m).

Formal definition of string marching (2)

text T a | b | c [falElEalE=y b | c

s=3
pattern P ——>|a|bla|a

* If P occurs with shift s in T, we call s a valid shift
* Otherwise, we call s an invalid shift.

* The string-matching problem is

the problem of finding all valid shifts with which a given pattern P
occurs in a given text T

Some string-matching algorithmes:

Algorithm Preprocessing time Matching time
Naive 0 O((n—m+ 1)m)
Rabin-Karp O (m) O((n—m+ 1)m)
Finite automaton O(m|2]) ()
Knuth-Morris-Pratt G (m) ®(n)

The preprocessing time is based on the pattern
This course covers the algorithms of Naive, Radin-Karp and Finite automaton

Notation and terminology

« X”": the set of all finite-length strings formed using characters from the alphabet X
» £:zero-length empty string
|x| : length of a string x
* xy : Concatenation of two strings x and y
* W Xx:Wisa prefix of a string x (x = wy for some stringy € X*.)
e ab = abcca

* w O x:w is a suffix of a string x (x = yw for some stringy € X*.)
e cca dabcca

The empty string € is both a suffix and a prefix of every string.
x 3y if and only if xa 3 ya.
C and 3 are transitive relations

Overlapping-suffix lemma

Suppose that x, y, and z are strings such that x J zand y 3 z. If |[x| < |y|,
then x 1 y. If |x] > |y|, then y O x. If |[x| = |y|, then x = y.

| —] | ﬁ
-

Another notation

The string-matching problem :
Finding all shiftssintherange0 < s < n—msuchthatP O T,,,.

* denote the k-character prefix P[1.. k]| of the pattern P[1..m] by P,

The naive string-matching algorithm

NAIVE-STRING-MATCHER(T . P)

n < length|T]
m <— length| P]
fors < Oton —m
doif P[1.. m]|=T[s+1..5+m]
then print “Pattern occurs with shift” s

hnh B W N —

takes time O((n — m + 1)m), and this bound is tight in the worst case.

Example : text a™ and pattern a™
10

]
9]
]
]
o
0
]
9]
]
)
o
o]
]
Q
)
]
o
Q

-
I
(S

A) A 5:3
alalb —> alalb —> alalb — =

(a) (b) (c) (d)

The operation of the naive string matcher for the pattern P = aab

and thetext T = acaabc. We can imagine the pattern P as a template
that we slide next to the text.

11

Think together

Suppose that all characters in the pattern P are different.

Show how to accelerate NAIVE-STRING-MATCHER to run in time O (n)
on an n-character text T .

12

The Rabin-Karp algorithm

* The Rabin-Karp algorithm uses ®(m) preprocessing time,
* Its worst-case running time is O((n —m + 1)m).
* [ts average-case running time is better

 use of elementary number-theoretic notions
* E.g., equivalence of two numbers modulo a third number

Assumption

* For now, let assume
x=1{0,1,2,...,9}
(each character is a decimal digit.)

* We can view a string of k consecutive characters as representing a length-k
decimal number

* let p denote its corresponding decimal value of the pattern P[1..m]
* let t, denote its corresponding decimal value of substring T[s+1.. s+ m],
* sisavalid shiftifand onlyift; = p

compute p (and similarly t,) in time ©(m) using Horner’s rule:
p = P[m] + 10 (P[m - 1] + 10(P[m - 2]+- - -+10(P[2] + 10P[1]) - - -))

Iy+1 can be computed from 7; in constant time

compute p and tg in time @(m) toy = 10(t, — 10" T[s + 1) + T[s + m + 1]
and all the t; values in a total of @(n - m + 1) time

we could determine all valid shifts s in time ®©(m) + ®(n - m + 1)=0(n)
by comparing p with each of the t; ’s (if the numbers are not very large!)

15

p and t, may be too large

 a simple cure for this problem :

Compute p and the t; ’s modulo a suitable modulus gq.

we can compute p modulo g in ®(m) time and all the t; 's modulo g in ®(n - m + 1) time

* The modulus g is typically chosen as a prime such that 10q just fits
within one computer word, which allows all the necessary
computations to be performed with single-precision arithmetic.

solution of working modulo g

* We can thus use the test t, = p (mod q) as a fast heuristic test to
rule out invalid shifts s.

* Any shift s for which t; = p (mod gq) must be tested further to see if
s is really valid or we just have a spurious hit.

RABIN-KARP-MATCHER(T, P.d, q)

[—
SOOI N bW~

11
12
13
14

n <— length|T] Time complexity?
m <— length| P]

h < d" ' mod ¢
p <0
to <— 0O
fori < 1 tom > Preprocessing.
do p < (dp + Pli]) mod ¢
to < (dto+ T[i]) mod ¢
fors < Oton —m > Matching.
doif p =1,
thenif P[1.. m]l|=T[s+1..5 + m]
then print “Pattern occurs with shift” s
ifs <n—m
thent,,) «— (d(ty —T[s+ 11h) +T[s +m + 1]) mod ¢

18

Rabin Karp in practice:

* takes ®(m) preprocessing time, and
its matching timeis O((n — m + 1)m) in the worst case

* In many applications, we expect few valid shifts (perhaps some
constant ¢ of them); in these applications, the expected matching
time of the algorithm is only

O((n —m+ 1) + cm) = 0(n + m), plus the time required to process
spurious hits.

Hashing instead of module g

* a random mapping from Z*to Z,,

* We can then expect that the number of spurious hitsis O(n/q)

* the expected matching time taken by the Rabin-Karp algorithm is

O(n) + O(m(v + n/q)), (vis the number of valid shifts)
* expected matching timeis O(n) ifv = 0(1) and we chooseq = m

Think together

Show how to extend the Rabin-Karp method to handle the problem of
looking for a given m x m pattern in an n x n array of characters. (The

pattern may be shifted vertically and horizontally, but it may not be
rotated.)

