طراحي الگوريتم

۱۹ آذر ۹۸ ملکی مجد

| Торіс                           | Reference                  |  |
|---------------------------------|----------------------------|--|
| Recursion and<br>Backtracking   | Ch.1 and Ch.2 JeffE        |  |
| Dynamic Programming             | Ch.3 JeffE and Ch.15 CLRS  |  |
| Greedy Algorithms               | Ch.4 JeffE and Ch.16 CLRS  |  |
| Amortized Analysis              | Ch.17 CLRS                 |  |
| Elementary Graph<br>algorithms  | Ch.6 JeffE and Ch.22 CLRS  |  |
| Minimum Spanning<br>Trees       | Ch.7 JeffE and Ch.23 CLRS  |  |
| Single-Source Shortest<br>Paths | Ch.8 JeffE and Ch.24 CLRS  |  |
| All-Pairs Shortest Paths        | Ch.9 JeffE and Ch.25 CLRS  |  |
| Maximum Flow                    | Ch.10 JeffE and Ch.26 CLRS |  |
| String Matching                 | Ch.32 CLRS                 |  |
| NP-Completeness                 | Ch.34 CLRS                 |  |

# تطابق رشته ها – String matching

- Finding all occurrences of a pattern in a text
  - Application: text editing, DNA pattern

### Formal definition of string marching

- The text is an array T [1 ... n] of length n
- That the pattern is an array  $P[1 \dots m]$  of length  $m \leq n$
- Elements of P and T are characters drawn from a finite alphabet  $\Sigma$ 
  - For example  $\Sigma = \{0,1\}$  or  $\Sigma = \{a, b, \dots, z\}$ .
  - Character arrays *P* and *T* are often called *strings* of characters

Pattern P occurs with shift s in text T:(P occurs beginning at position s + 1 in T)

If 
$$0 \le s \le n - m$$
 and  $T[s + 1 \dots s + m] = P[1 \dots m]$   
(that is, if  $T[s + j] = P[j]$ , for  $1 \le j \le m$ ).

4

b

a b c a b a a

s=3 a b a a

text T

pattern P

ca

b

ac

# Formal definition of string marching (2)



- If *P* occurs with shift *s* in *T*, we call *s* a *valid shift* 
  - Otherwise, we call s an *invalid shift*.
- The string-matching problem is

the **problem of finding all valid shifts** with which a given pattern P occurs in a given text T

## Some string-matching algorithms:

| Algorithm          | Preprocessing time | Matching time |
|--------------------|--------------------|---------------|
| Naive              | 0                  | O((n-m+1)m)   |
| Rabin-Karp         | $\Theta(m)$        | O((n-m+1)m)   |
| Finite automaton   | $O(m  \Sigma )$    | $\Theta(n)$   |
| Knuth-Morris-Pratt | $\Theta(m)$        | $\Theta(n)$   |

The preprocessing time is based on the pattern

This course covers the algorithms of Naïve, Radin-Karp and Finite automaton

## Notation and terminology

- $\Sigma^*$ : the set of all finite-length strings formed using characters from the alphabet  $\Sigma$
- ε : zero-length empty string
- |x| : length of a string x
- xy : Concatenation of two strings x and y
- $w \sqsubset x$ : w is a **prefix** of a string  $x (x = wy \text{ for some string } y \in \Sigma^*$ .)
  - ab ⊏ abcca
- $w \supseteq x$ : w is a suffix of a string  $x (x = yw \text{ for some string } y \in \Sigma^*$ .)
  - cca ⊐ abcca

The empty string  $\varepsilon$  is both a suffix and a prefix of every string.  $x \sqsupset y$  if and only if  $xa \sqsupset ya$ .  $\Box$  and  $\Box$  are transitive relations

#### Overlapping-suffix lemma

Suppose that x, y, and z are strings such that  $x \sqsupset z$  and  $y \sqsupset z$ . If  $|x| \le |y|$ , then  $x \sqsupset y$ . If  $|x| \ge |y|$ , then  $y \sqsupset x$ . If |x| = |y|, then x = y.



#### Another notation

The string-matching problem :

Finding all shifts s in the range  $0 \le s \le n - m$  such that  $P \ \exists T_{s+m}$ .

• denote the k-character prefix P[1 ... k] of the pattern P[1 ... m] by  $P_k$ 

The naive string-matching algorithm

NAIVE-STRING-MATCHER(T, P)

- 1  $n \leftarrow length[T]$
- 2  $m \leftarrow length[P]$
- 3 for  $s \leftarrow 0$  to n m
- 4 **do if** P[1 ... m] = T[s + 1 ... s + m]5 **then** print "Pattern occurs with shift" *s*

takes time O((n - m + 1)m), and this bound is tight in the worst case. Example : text  $a^n$  and pattern  $a^m$ 

10



The operation of the naive string matcher for the pattern P = aaband the text T = acaabc. We can imagine the pattern P as a *template* that we slide next to the text.

## Think together

Suppose that all characters in the pattern *P* are different.

Show how to accelerate NAIVE-STRING-MATCHER to run in time  $\mathcal{O}(n)$  on an n-character text T.

## The Rabin-Karp algorithm

- The Rabin-Karp algorithm uses  $\Theta(m)$  preprocessing time,
- Its worst-case running time is  $\Theta((n m + 1)m)$ .
- Its average-case running time is better
- use of elementary number-theoretic notions
  - E.g., equivalence of two numbers modulo a third number

#### Assumption

• For now, let assume

 $\Sigma = \{0, 1, 2, \dots, 9\},\$ (each character is a decimal digit.)

- We can view a string of k consecutive characters as representing a length-k decimal number
- let *p* denote its corresponding decimal value of the pattern *P*[1..*m*]
- let  $t_s$  denote its corresponding decimal value of substring T[s + 1 . . s + m],
- *s* is a valid shift if and only if  $t_s = p$

compute p (and similarly  $t_0$ ) in time  $\Theta(m)$  using Horner's rule:  $p = P[m] + 10 (P[m-1] + 10(P[m-2] + \cdots + 10(P[2] + 10P[1]) \cdots))$ 

compute *p* and  $t_s$  in time  $\Theta(m)$ and **all the**  $t_s$  values in a total of  $\Theta(n - m + 1)$  time

we could determine all valid shifts s in time  $\Theta(m) + \Theta(n - m + 1) = \Theta(n)$ by comparing p with each of the  $t_s$  's (if the numbers are not very large!)

### p and $t_s$ may be too large

• a simple cure for this problem :

Compute p and the  $t_s$  's modulo a suitable modulus q. we can compute p modulo q in  $\Theta(m)$  time and all the  $t_s$  's modulo q in  $\Theta(n - m + 1)$  time

• The modulus *q* is typically chosen as a prime such that 10*q* just fits within one computer word, which allows all the necessary computations to be performed with single-precision arithmetic.

#### solution of working modulo q

- We can thus use the test  $t_s \equiv p \pmod{q}$  as a fast heuristic test to rule out invalid shifts s.
- Any shift *s* for which  $t_s \equiv p \pmod{q}$  must be tested further to see if *s* is really valid or we just have a *spurious hit*.

RABIN-KARP-MATCHER (T, P, d, q)1  $n \leftarrow length[T]$ **Time complexity?** 2  $m \leftarrow length[P]$ 3  $h \leftarrow d^{m-1} \mod q$ 4  $p \leftarrow 0$ 5  $t_0 \leftarrow 0$ 6 for  $i \leftarrow 1$  to m  $\triangleright$  Preprocessing. **do**  $p \leftarrow (dp + P[i]) \mod q$ 7 8  $t_0 \leftarrow (dt_0 + T[i]) \mod q$ for  $s \leftarrow 0$  to n - m9  $\triangleright$  Matching. 10 do if  $p = t_s$ 11 then if P[1...m] = T[s + 1...s + m]then print "Pattern occurs with shift" s 12 13 if s < n - mthen  $t_{s+1} \leftarrow (d(t_s - T[s+1]h) + T[s+m+1]) \mod q$ 14

18

### Rabin Karp in practice:

• takes  $\Theta(m)$  preprocessing time, and

its matching time is  $\Theta((n - m + 1)m)$  in the worst case

 In many applications, we expect few valid shifts (perhaps some constant c of them); in these applications, the expected matching time of the algorithm is only

O((n - m + 1) + cm) = O(n + m), plus the time required to process spurious hits.

## Hashing instead of module q

- a random mapping from  $\Sigma^*$  to  $Z_q$
- We can then expect that the number of spurious hits is O(n/q)
- the expected matching time taken by the Rabin-Karp algorithm is O(n) + O(m(v + n/q)), (v is the number of valid shifts)
- expected matching time is O(n) if v = O(1) and we choose  $q \ge m$

### Think together

Show how to extend the Rabin-Karp method to handle the problem of looking for a given  $m \times m$  pattern in an  $n \times n$  array of characters. (The pattern may be shifted vertically and horizontally, but it may not be rotated.)